• How is Stainless Steel Pipe Made | Stainless Steel Pipe and Tube Manufacturing Process | SS Pipe Dimensions Sizes in OD & Inches | Pressure Rating | Schedule, Wall Thickness | Weight | Tolerances
  • How is Stainless Steel Pipe Made | Stainless Steel Pipe and Tube Manufacturing Process

    How is Stainless Steel Pipe Made | Stainless Steel Pipe and Tube Manufacturing Process | Learn More About SS Pipe Dimensions | Sizes in OD & Inches | Pressure Rating | Schedule, Wall Thickness & Weight | tolerances | properties

    stainless steel pipe schedule 40, stainless steel pipe schedule 80, stainless steel pipe schedule 5, stainless steel pipe schedule 10, stainless steel pipe dimensions, stainless steel pipe pressure rating, stainless steel pipe chart, stainless steel pipe price, stainless steel pipe weight calculator, stainless steel pipe weight formula

    stainless steel pipe schedule chart metric, Stainless Steel Pipes Dimension (Schedule, Wall Thickness & Weight), Stainless Steel Pipe -Type 304 Schedule 40S , ss 304 pipe weight per meter, Stainless Steel Pipe Dimension in mm & weight per kg., Stainless Austenitic Steel Tubes, Stainless Steel Chemical Composition and mechanical properties, ss 304 square pipe weight chart

    DOWNLOAD PDF :: SS Chemical Mechanical Properties | ANSI ASME 36.19M Stainless Steel Pipe | SS Chemical Mechanical Properties | Stainless Steel Pipes Dimension | Stainless Steel Pipes Sizes

    How is Stainless Steel Pipe Made | Stainless Steel Pipe and Tube Manufacturing Process

    Stainless Steel Pipe and Tube Manufacturing Process

    Stainless steel pipe and tube manufacturing process

    In the nineteenth century, rolling mill technology was the only technique used to manufacture stainless tubes and pipes for industrial purpose. This rolling technique involved long procedures.  The rolled strips of sheet were formed into a circular cross section with the help of funnel rolls. The lap welding was then done on these rolled strips through the forge welding process.

    Thankfully with the advent of development and technology, various processes came into existence for the manufacturing of stainless tubes and pipes in India. Now-a-days, stainless steel pipes and tubes are manufactured with continuous tube mill using multitorch tungsten Inert gas. The filler metal or forge welding process is not used in this technique.

    Stainless Steel Pipe and Tube Manufacturing Process

    Tube mill Process description:

    • Rolling and welding

    Firstly, the stainless steel strips are made to gone through various quality checks and are trimmed at edges. They are then fed to the tubes mill by stainless steel pipe manufacturers in India. The strips pass through the number of rollers as per the required size. In the tubes-mill, the strip is gradually converted into the tubular shape. The fitted welding machine is then used to weld trim edges of the strip using TIG welding process. The scraps and inside weld bead are removed instantaneously by the Tibo machine. In this way, rolled pipes and tubes are formed.

    • The cleaning and heating phase

    The rolled stainless steel pipes thus manufactured are cut to the required lengths depending upon the industrial demand. These stainless pipes and tubes are then subjected to cleaning to remove the dirt. Further, a heat treatment is given to these rolled pipes and tubes to remove the stresses that may occur due to welding and formation processes. Heat treatment is given on the continuously rolling hearth furnace. The furnace is fitted with temperature recorders and controllers. After the heat treatment process, the SS tubes and pipes are straightened and subjected to pickling for removing scales from the surface.

    • Cold- drawing process

    In some cases, the required size may not be obtained from the mill directly. Then, the cold operation process can be used to obtain the desired size. In cold drawing process, the tubes or pipes are coated with oxalic and soap solution. This solution acts as a lubricant to reduce friction while cold drawing operation. In the cold drawing process, the tube or pipe is drawn over the bench using Die plugs.

    • Finishing process

    The drawn-out tube or ss pipe is then subjected to cleaning, heat treatment, pickling and straightening. The computerized ink jet marking machine is used to do the marking on the finished pipes or tubes. The pipe or tube is marked with grade of material, size, heat number and the stamp of third party inspection before passing on to stainless steel pipe exporters. The stainless tubes or pipes thus produced will undergo certain testing and quality checks. This process is followed by proper packing and dispatch. There are numerous numbers of stainless steel pipe applications, these pipes and tubes are used thereafter for.

    Raaj Sagar Steels is one of the leading Stainless Steel Pipe manufacturer in India. We provide services to oil and gas, pipeline, food processing, automobile and other manufacturing industries worldwide Our state of art manufacturing unit is capable of producing wide range and dimensions of stainless steel pipe and tube. We supply our customers with the highest level of stainless steel products. We are Stainless steel pipe and tube manufacturer from India.

    Steel Pipe History

    Steel pipes are long, hollow tubes that are used for a variety of purposes. They are produced by two distinct methods which result in either a welded or seamless pipe. In both methods, raw steel is first cast into a more workable starting form. It is then made into a pipe by stretching the steel out into a seamless tube or forcing the edges together and sealing them with a weld. The first methods for producing steel pipe were introduced in the early 1800s, and they have steadily evolved into the modern processes we use today. Each year, millions of tons of steel pipe are produced. Its versatility makes it the most often used product produced by the steel industry.

    Steel pipes are found in a variety of places. Since they are strong, they are used underground for transporting water and gas throughout cities and towns. They are also employed in construction to protect electrical wires. While steel pipes are strong, they can also be lightweight. This makes them perfect for use in bicycle frame manufacture. Other places they find utility is in automobiles, refrigeration units, heating and plumbing systems, flagpoles, street lamps, and medicine to name a few.


    People have used pipes for thousands of years. Perhaps the first use was by ancient agriculturalists who diverted water from streams and rivers into their fields. Archeological evidence suggests that the Chinese used reed pipe for transporting water to desired locations as early as 2000 B.C. Clay tubes that were used by other ancient civilizations have been discovered. During the first century A.D. , the first lead pipes were constructed in Europe. In tropical countries, bamboo tubes were used to transport water. Colonial Americans used wood for a similar purpose. In 1652, the first waterworks was made in Boston using hollow logs.

    Development of the modern day welded steel pipe can be traced back to the early 1800s. In 1815, William Murdock invented a coal burning lamp system. To fit the entire city of London with these lights, Murdock joined together the barrels from discarded muskets. He used this continuous pipeline to transport the coal gas. When his lighting system proved successful a greater demand was created for long metal tubes. To produce enough tubes to meet this demand, a variety of inventors set to work on developing new pipe making processes.

    An early notable method for producing metal tubes quickly and inexpensively was patented by James Russell in 1824. In his method, tubes were created by joining together opposite edges of a flat iron strip. The metal was first heated until it was malleable. Using a drop hammer, the edges folded together and welded. The pipe was finished by passing it through a groove and rolling mill.

    Russell's method was not used long because in the next year, Comelius Whitehouse developed a better method for making metal tubes. This process, called the butt-weld process is the basis for our current pipe-making procedures. In his method, thin sheets of iron were heated and drawn through a cone-shaped opening. As the metal went through the opening, its edges curled up and created a pipe shape. The two ends were welded together to finish the pipe. The first manufacturing plant to use

    Welded pipe is formed by rolling steel strips through a series of grooved rollers that mold the material into a circular shape. Next, the unwelded pipe passes by welding electrodes. These devices seal the two ends of the pipe together.Welded pipe is formed by rolling steel strips through a series of grooved rollers that mold the material into a circular shape. Next, the unwelded pipe passes by welding electrodes. These devices seal the two ends of the pipe together. this process in the United States was opened in 1832 in Philadelphia.

    Gradually, improvements were made in the Whitehouse method. One of the most important innovations was introduced by John Moon in 1911. He suggested the continuous process method in which a manufacturing plant could produce pipe in an unending stream. He built machinery for this specific purpose and many pipe manufacturing facilities adopted it.

    While the welded tube processes were being developed, a need for seamless metal pipes arouse. Seamless pipes are those which do not have a welded seam. They were first made by drilling a hole through the center of a solid cylinder. This method was developed during the late 1800s. These types of pipes were perfect for bicycle frames because they have thin walls, are lightweight but are strong. In 1895, the first plant to produce seamless tubes was built. As bicycle manufacturing gave way to auto manufacturing, seamless tubes were still needed for gasoline and oil lines. This demand was made even greater as larger oil deposits were found.

    As early as 1840, ironworkers could already produce seamless tubes. In one method, a hole was drilled through a solid metal, round billet. The billet was then heated and drawn through a series of dies which elongated it to form a pipe. This method was inefficient because it was difficult to drill the hole in the center. This resulted in an uneven pipe with one side being thicker than the other. In 1888, an improved method was awarded a patent. In this process the solid billed was cast around a fireproof brick core. When it was cooled, the brick was removed leaving a hole in the middle. Since then new roller techniques have replaced these methods.


    There are two types of steel pipe, one is seamless and another has a single welded seam along its length. Both have different uses. Seamless tubes are typically more light weight, and have thinner walls. They are used for bicycles and transporting liquids. Seamed tubes are heavier and more rigid. The have a better consistency and are typically straighter. They are used for things such as gas transportation, electrical conduit and plumbing. Typically, they are used in instances when the pipe is not put under a high degree of stress.

    Certain pipe characteristics can be controlled during production. For example, the diameter of the pipe is often modified depending how it will be used. The diameter can range from tiny pipes used to make hypodermic needles, to large pipes used to transport gas throughout a city. The wall thickness of the pipe can also be controlled. Often the type of steel will also have an impact on pipe's the strength and flexibility. Other controllable characteristics include length, coating material, and end finish.

    Raw Materials

    The primary raw material in pipe production is steel. Steel is made up of primarily iron. Other metals that may be present in the alloy include aluminum, manganese, titanium, tungsten, vanadium, and zirconium. Some finishing materials are sometimes used during production. For example, paint may be

    Seamless pipe is manufactured using a process that heats and molds a solid billet into a cylindrical shape and then rolls it until it is stretched and hollowed. Since the hollowed center is irregularly shaped, a bullet-shaped piercer point is pushed through the middle of the billet as it is being rolled.

    Seamless pipe is manufactured using a process that heats and molds a solid billet into a cylindrical shape and then rolls it until it is stretched and hollowed. Since the hollowed center is irregularly shaped, a bullet-shaped piercer point is pushed through the middle of the billet as it is being rolled.

    used if the pipe is coated. Typically, a light amount of oil is applied to steel pipes at the end of the production line. This helps protect the pipe. While it is not actually a part of the finished product, sulfuric acid is used in one manufacturing step to clean the pipe.

    The Manufacturing 

    Steel pipes are made by two different processes. The overall production method for both processes involves three steps. First, raw steel is converted into a more workable form. Next, the pipe is formed on a continuous or semicontinuous production line. Finally, the pipe is cut and modified to meet the customer's needs.

    Ingot production

    • 1 Molten steel is made by melting iron ore and coke (a carbon-rich substance that results when coal is heated in the absence of air) in a furnace, then removing most of the carbon by blasting oxygen into the liquid. The molten steel is then poured into large, thick-walled iron molds, where it cools into ingots.
    • 2 In order to form flat products such as plates and sheets, or long products such as bars and rods, ingots are shaped between large rollers under enormous pressure.

    Producing blooms and slabs

    • 3 To produce a bloom, the ingot is passed through a pair of grooved steel rollers that are stacked. These types of rollers are called "two-high mills." In some cases, three rollers are used. The rollers are mounted so that their grooves coincide, and they move in opposite directions. This action causes the steel to be squeezed and stretched into thinner, longer pieces. When the rollers are reversed by the human operator, the steel is pulled back through making it thinner and longer. This process is repeated until the steel achieves the desired shape. During this process, machines called manipulators flip the steel so that each side is processed evenly.
    • 4 Ingots may also be rolled into slabs in a process that is similar to the bloom making process. The steel is passed through a pair of stacked rollers which stretch it. However, there are also rollers mounted on the side to control the width of the slabs. When the steel acquires the desired shape, the uneven ends are cut off and the slabs or blooms are cut into shorter pieces.

    Further processing

    • 5 Blooms are typically processed further before they are made into pipes. Blooms are converted into billets by putting them through more rolling devices which make them longer and more narrow. The billets are cut by devices known as flying shears. These are a pair of synchronized shears that race along with the moving billet and cut it. This allows efficient cuts without stopping the manufacturing process. These billets are stacked and will eventually become seamless pipe.
    • 6 Slabs are also reworked. To make them malleable, they are first heated to 2,200° F (1,204° C). This causes an oxide coating to form on the surface of the slab. This coating is broken off with a scale breaker and high pressure water spray. The slabs are then sent through a series of rollers on a hot mill and made into thin narrow strips of steel called skelp. This mill can be as long as a half mile. As the slabs pass through the rollers, they become thinner and longer. In the course of about three minutes a single slab can be converted from a 6 in (15.2 cm) thick piece of steel to a thin steel ribbon that can be a quarter mile long.
    • 7 After stretching, the steel is pickled. This process involves running it through a series of tanks that contain sulfuric acid to clean the metal. To finish, it is rinsed with cold and hot water, dried and then rolled up on large spools and packaged for transport to a pipe making facility.

    Pipe making

    • 8 Both skelp and billets are used to make pipes. Skelp is made into welded pipe. It is first placed on an unwinding machine. As the spool of steel is unwound, it is heated. The steel is then passed through a series of grooved rollers. As it passes by, the rollers cause the edges of the skelp to curl together. This forms an unwelded pipe.
    • 9 The steel next passes by welding electrodes. These devices seal the two ends of the pipe together. The welded seam is then passed through a high pressure roller which helps create a tight weld. The pipe is then cut to a desired length and stacked for further processing. Welded steel pipe is a continuous process and depending on the size of the pipe, it can be made as fast as 1,100 ft (335.3 m) per minute.
    • 10 When seamless pipe is needed, square billets are used for production. They are heated and molded to form a cylinder shape, also called a round. The round is then put in a furnace where it is heated white-hot. The heated round is then rolled with great pressure. This high pressure rolling causes the billet to stretch out and a hole to form in the center. Since this hole is irregularly shaped, a bullet shaped piercer point is pushed through the middle of the billet as it is being rolled. After the piercing stage, the pipe may still be of irregular thickness and shape. To correct this it is passed through another series of rolling mills.

    Final processing

    • 11 After either type of pipe is made, they may be put through a straightening machine. They may also be fitted with joints so two or more pieces of pipe can be connected. The most common type of joint for pipes with smaller diameters is threading—tight grooves that are cut into the end of the pipe. The pipes are also sent through a measuring machine. This information along with other quality control data is automatically stenciled on the pipe. The pipe is then sprayed with a light coating of protective oil. Most pipe is typically treated to prevent it from rusting. This is done by galvanizing it or giving it a coating of zinc. Depending on the use of the pipe, other paints or coatings may be used.

    Quality Control

    A variety of measures are taken to ensure that the finished steel pipe meets specifications. For example, x-ray gauges are used to regulate the thickness of the steel. The gauges work by utilizing two x rays. One ray is directed at a steel of known thickness. The other is directed at the passing steel on the production line. If there is any variance between the two rays, the gauge will automatically trigger a resizing of the rollers to compensate.

    Pipes are also inspected for defects at the end of the process. One method of testing a pipe is by using a special machine. This machine fills the pipe with water and then increases the pressure to see if it holds. Defective pipes are returned for scrap.

    Compleate Information About stainless steel seamless pipe dimensions, seamless pipe sizes, seamless pipe specification, seamless pipe standards, seamless tube sizes, seamless pipe, seamless pipe manufacturer in india, seamless pipe manufacturer in europe, seamless pipe hs code, seamless pipe manufacturer in china, seamless pipes and tubes, seamless pipe chart, seamless pipe china, seamless pipe weight chart, seamless pipe manufacturer china, seamless pipe distributor, seamless pipe import data zauba, seamless pipe fittings, seamless tube hs code, seamless pipe india, seamless pipe manufacturer in japan, seamless pipe manufacturer in malaysia, seamless pipe manufacturer in korea, seamless pipe suppliers in dubai, seamless pipe supplier in malaysia, seamless pipe importers, seamless pipe manufacturers, seamless pipe malaysia, seamless pipe manufacturing process, seamless pipe mills, pipe seamless or welded, seamless pipe pressure rating, seamless pipe price, seamless pipe suppliers, seamless pipe schedule, seamless pipe singapore, seamless tube suppliers, seamless pipes & tubes, seamless tube tolerances, seamless pipe us, seamless tube uk, seamless pipe weight.

    Stainless Steel Pipes Specifications

    ASTM A312: Seamless and straight-seam welded austenitic pipe intended for high temperature and general corrosive service. Filler metal not permitted during welding.

    ASTM A358: Electric fusion welded austenitic pipe for corrosive and/or high temperature service. Typically only pipe up to 8 inch is produced to this specification. Addition of filler metal is permitted during welding.

    ASTM A790: Seamless and straight-seam welded ferritic/austenitic (duplex) pipe intended for general corrosive service, with a particular emphasis on resistance to stress corrosion cracking.

    ASTM A409: Straight-seam or spiral-seam electric fusion welded large diameter austenitic light-wall pipe in sizes 14” to 30” with walls Sch5S and Sch 10S for corrosive and/or high

    ASTM A376: Seamless austenitic pipe for high temperature applications.

    ASTM A813: Single-seam, single- or double- welded austenitic pipe for high temperature and general corrosive applications.

    ASTM A814: Cold-worked welded austenitic pipe for high temperature and general corrosive service.

    CLICK HERE FOR WEIGHT FORMULA & WEIGHT CALCULATOR : Pipe Weight Formula In Kg | Plate Weight Formula Metric | Sheet Weight Formula | Tube Weight Formula | Aluminium Weight Formula Kg | Flat Bar Weight Calculator, Stainless Steel Sheet Weight Calculation Formula, Formula for Calculating SS Pipe Weight, Formula for Calculating SS Bar Weight, Formula for Calculating SS Square Bar Weight, Formula for Calculating SS Hexagonal Bar Weight, Formula for Calculating SS Flat Bar Weight, Formula for Calculating SS Sheet & Plates Weight, Formula for Calculating SS Circle Weight, Formula for Calculating Brass Pipe/ Copper Pipe Weight, Formula for Calculating Lead Pipe Weight, Formula for Calculating Aluminium Pipe Weight, Formula for Calculating Aluminium Sheet Weight, STEEL PIPE WEIGHT CALCULATOR, STAINLESS STEEL PIPE WEIGHT CALCULATOR

    ASTM A312 Stainless Steel Pipe Price List in India

    If you don’t see what you’re looking for just call one of our team members at +91-22-6659 5285 Or Mail Us inquiry@raajsagarsteels.com. No inquiry is too large or too small, we specialize in locating hard to find items. If you do see what you are looking, we would love to assist you and give you a quote today!

    24 Hrs. Online Whatsapp Number   Contact Person: Mr. Milap Mehta - Cell: +91-9869 532 584

    Our Overseas Sales Distributors

    Dealer,Distributor & Suppliers of Top 10 Manufacturers of Stainless Steel Pipes
    Nippon Steel & Sumitomo Metals (NSSMC)
    Nippon Steel Pipes
    Sandvik Stainless Steel Pipes
    SANYO Special Steel
    Sanyo Special Steel Pipes
    Kobe Steel
    Kobe Stainless Steel Pipes
    Valourec & Mannesman -v&m
    Salzgitter Mannesmann Stainless Pipe
    Salzgitter Mannesmann Stainless Tubes
    Tubacex Innovative Steel Pipe Solutions
    Tubacex Steel Pipe
    Schoeller Bleckmann
    Schoeller Bleckmann Steel Pipes

    duplex stainless steel pipe schedule chart, 316 stainless steel pipe schedule 40 dimensions, stainless steel pipe inside diameter, stainless steel pipe hs code, stainless steel pipe lengths, stainless steel pipe schedule 80 dimensions, stainless steel pipe schedule 80 pressure rating, stainless steel pipe surface finish, stainless steel surface finish specifications, stainless steel pipe grades, stainless steel pipe size inch, stainless steel pipe 304 grade weight, stainless steel pipe schedule 60, stainless steel pipe jindal, stainless steel pipe material

    how is stainless steel pipe made, what is stainless steel pipe used for, stainless steel pipe large diameter, stainless steel pipe schedule mm, schedule 10 stainless steel pipe dimensions metric, stainless steel pipe outside diameter, stainless steel pipe od sizes, stainless steel pipe schedule 80 price, stainless steel pipe schedule 10 price, schedule 160 stainless steel pipe price
    schedule 40 stainless steel pipe price, schedule 10 stainless steel pipe properties, schedule xxs stainless steel pipe pressure rating, schedule 10 stainless steel pipe rating, schedule 40 304 stainless steel pipe pressure rating, schedule 10 316 stainless steel pipe pressure rating, stainless steel pipe schedule sizes, schedule 40 stainless steel pipe specifications, stainless steel pipe schedule thickness, stainless steel pipe schedule 40 thickness, stainless steel pipe schedule 10 thickness, stainless steel pipe tolerances, stainless steel pipe table, stainless steel pipe unit weight, stainless steel pipe schedule wall thickness, stainless steel pipe wall thickness chart, stainless steel pipe weight per foot, schedule 40 stainless steel pipe yield strength, stainless steel pipe schedule 100, stainless steel pipe sch 120

    We Export to: We Import to:

    People Also Search :